京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4552|回复: 0

Facebook:把握好三维世界,才能把握好AR/VR的未来

[复制链接]

12

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-10-30 22:35:04 | 显示全部楼层 |阅读模式 来自 中国
hi188| 编辑

: C& o! E) {) r* S6 z0 v: V% X近期正在韩国首尔国际计算机视觉大会(ICCV)上,一大波的AI研究继而公布,Facebook计划发表40多篇论文,其中我们关注到2D照片下三维场景重建与内容理解,等等3D图像分析的研究。& [) y6 Z( z  _! l9 J
这些有什么作用呢,我们知道随着5G技术和千兆宽带的普及,届时的互联网媒介形式势必也会迎来改变,其中以AR/VR体验的三维形态的媒体内容被看作重点方向。/ E. ], y* p- W9 y) r# w& _0 m8 M
随着场景形态逐渐向三维转变,届时将会迎来一个高度逼真的虚拟世界,而三维内容的理解也将变得更为重要。例如现在的AI技术可以很好的识别2D照片/视频中的物体、动作等等,而到了三维场景中又会迎来新的玩法。
4 B/ {1 M; _: R: a& A; k( w
$ ?1 |, S$ w2 r6 c+ dFacebook AI研究院今天发布的一篇博客中,着重提到了其在3D内容理解上的努力。
2 e. e6 V3 ], K' T1 P2 j5 ^文章中提到,想要了解周围的世界的前提是,AI必须能够理解三维视觉场景,这种需求不仅仅体现在机器人、导航、AR/VR等方面,甚至在2D照片/视频中也得能够正确识别出其中的一个杯子的三维形状等等。; b: @; K7 Q. u6 k' i  ?4 n4 Z
以下的几项研究,正在以不同但互补的方式来推进三维场景解析技术的发展。) Z* m' J  }2 v
    4 N9 k! \) X/ e# W) g
  • Mesh R-CNN,一种可以精准预测现实环境中2D图像中物体的3D形状的框架,其可以检测复杂的对象,比如椅子腿儿、被遮挡的家具等;
    ! |/ ^2 V) t) P6 n3 i
  • C3DPO,一种在2D关键点注释中,提取出可变性对象的3D模型的方法,已用于14个类别的对象,通过2D关键点标注实现,无3D标注信息;
    2 k+ C, f) Z2 `7 T
  • 通过新方法学习图像像素与3D形状之间的关联,大大降低对注释训练的依赖,从而更接近可以实现更多种类对象3D重建的自我监督系统;0 [7 L8 m( L' U% e' z: Z/ M& j
  • VoteNet技术,可在LiDAR或其它3D传感器输入可用时,进行对象检测,该系统完全基于3D点云技术,精度更高。' P- n1 L# b/ m( f: E

    ) h! X6 R: Y" w& ]4 T/ e% x
    * P' T8 ^3 @# w
如何更好的解析出3D形状9 m* R" ]5 ^; N& |( o  M, z
包括Mask R-CNN在内的很多图像解析AI框架,往往是在2D环境中进行工作,在3D环境下可能并不适用。不过,凭借2D环境中的感知技术作为积累,Facebook重新设计了一个3D对象重建的AI模型。! u8 ?0 ^/ Q; D5 X. k
该模型的特点是可在现实的场景图片中去预测3D对象的形状,而这其中的挑战在于光学部分,例如:是否有遮挡,是否有杂波以及其它拓扑的对象。1 f, Z- e  k$ k! h
为了应对挑战,首先通过网格预测分支加强Mask R-CNN在2D对象分割系统,并构建Totch3d(Pytorch库)从而实现:Mesh R-CNN,其通过Mask R-CNN进行对象的检测和分类。然后通过新型网络预测模型推测3D形状,该预测包含体素预测和网格细化共同构成。
! _+ ?1 A' U  r$ j! s2 L: X8 W& n' |- b" n
最后通过Detectron2完成整套框架的结构,即:输入RGB图像--检测物体--预测3D形状的过程。
5 G( E  p  [9 U( c据悉,Facebook的新型方法支持成对图像和网格的完全监督学习预测3D形状,为了进行训练,Facebook还是用10000对图像和网格组成的Pix3D数据集,这个数据集比其它训练数据集(通常10万个图像、需进行标注)要小很多。
' b3 b1 K) }1 ]  P最终在两个数据集上进行Mesh R-CNN的评估,效果比较理想。在Pix3D数据集上,能够检测所有类别对象,并能预测出被遮挡的家具的完整形状;而在ShapNet数据集上,体素预测和网格细化的混合法比以前要好7%。
  |  u- d* w7 A. i. ^
$ ]+ w! l; S6 f0 E- m准确预测、并重建现实世界中无约束的场景形状,无疑是增强未来AR\VR等其它类似体验的重要工作。联想到Facebook在今年OC6公布的共享空间和3D重建体验,以及未来面向AR和机器视觉等众多体验的合集LiveMap,这些都是技术的基础。( W* ^# ]' `  X) S9 `
尽管如此,和2D图像相比,3D图像在收集注释数据的工作上要复杂得多,且更为耗时,这也是3D形状预测数据集比2D对应数据集进展要落后的原因,而接下来Facebook也在探索更多不同的方法,利用监督学习和自我监督学习来重建3D对象。$ z8 H3 ^- A9 ~$ {1 u' j) L( @' w
使用2D关键点重建3D对象类别* r! Q$ i3 F. U$ |; t& K
对于那些无法使用网格和图像训练、且无需完全重建静态对象/场景的案例,Facebook开发了一种新的代替方案:C3DPO,其通过大量丰富的2D关键节点数据,进行监督学习实现更好的重建结果。而C3DPO以弱监督的方式解析出3D几何形状,且被证明适合大规模部署。
- W- T7 u% }9 E- s) Y: W6 n1 r
4 L6 S3 s- ]) _# ?  p8 h$ ^8 q/ @9 J- P
其中特定部分(例如人体关键、鸟翅膀)的2D关键点,成为了该方法中重新构建对象几何形状、变形或视点变化的线索。这些3D关键点利用价值也很高,例如在VR中创建逼真的面部和全身网格模型时。- N0 A; ~# H- I! A' t3 j, d( ?
简单来讲,C3DPO是一种能重建包括数十万具有上千个2D关键点的数据集方法,并且针对三种不同的数据集、14种以上的非刚性物体类别,进行精度重建。另外,和Mesh R-CNN类似,C3DPO同样支持那些有遮挡或部分缺失图像。- r& K* \6 S1 F8 x
而C3DPO模型还具备两个创新,一是,在给定一组单眼2D关键点的情况下,C3DPO将以标准方向预测相机视点的参数和3D关键点位置;二是,Facebook提出一个新的正则化技术,其包括与3D重建网络模型共同学习的第二个辅助深度模型,它解决了因分解3D视点和形状带来的冲突。正是基于这两项创新,才是C3DPO的方法比传统的数据统计模型表现更好。
  \$ S! x) W. m' V根据Facebook描述,这种3D模型构建在以前是无法实现的,主要由于此前基于矩阵式分解的方法有很多限制,与C3DPO采用的深度网络模型不同,其能够“小规模”运行。为了解决3D重建带来的变形问题,此前往往通过同一时间多张图像合成解决,这对硬件要求更高,而C3DPO则可以在硬件无法进行3D拍摄(例如飞机等体型特别大的物体)的情况下实现3D重建。$ S* G& B+ U$ N
另外还有从图像集学习图形像素与形状的映射关系,以及提升3D系统中对象检测能力的两个论文本文不再解读,感兴趣可阅读原文了解。4 ?+ V: t: u2 L: w0 Z
总而言之,3D计算机视觉领域还有很多值得探究的领域,还有很多问题尚未被解决,还需要像此前进行2D计算机视觉探索那样继续前行。随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。Facebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。' d/ p8 f8 o) a
随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。
0 B3 y1 O! P4 C0 f7 M3 BFacebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。
1 l6 f$ r0 y9 s$ {1 @# ]参考:
+ o+ o4 v. v0 H6 \/ e  K; m: k, G% ahttps://ai.facebook.com/blog/pushing-state-of-the-art-in-3d-content-understanding/$ _) H9 K& T2 p# B# O! r
(END)

/ \; H/ E9 b4 }& F( P, J7 c# p6 X/ q3 n6 x, [$ g5 @
    推荐阅读    
9 @* q$ W3 z0 E( O3 V9 k# a: Y. K+ I! Z& X$ W
% ~* u# k. E9 x( M; C, s

  N/ S; w8 [) D. U

7 t+ D8 Y$ V$ r# t. H5 a" K6 v* O% S  _0 e7 q8 R- ^: N+ ^6 J. U

4 \. |8 I+ v, @' r
& Y$ ]( }& R* `" _+ t9 h9 A; E: M
/ T+ p/ s5 u' M% ^) d
 每天五分钟,轻松了解前沿科技。    & D  q4 X  W+ b1 T3 w) {5 b9 g
         —— 青亭网  
/ X7 U. B7 [+ e, E4 O& i3 N来源:http://mp.weixin.qq.com/s?src=11&timestamp=1572444005&ver=1944&signature=Nb57qrD6cXqllnhJvEE6H6occUi*WX3i2MU6ToOnegiW6vhKPmdGUN4DuPLvPk3UGjMXyZcIIma3RpHXHPcUaJQxDFHSnOz9N*hHRaEl1BiKeHC0O4YFvbD8CwX78lCz&new=1
+ C, R% f) U/ S- L5 w3 z( J0 F* s$ Q: a免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2026-1-15 01:18 , Processed in 0.045294 second(s), 28 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表