京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 7746|回复: 0

HIDS系统存储方案探索与实践

[复制链接]

4

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-12-23 21:14:37 | 显示全部楼层 |阅读模式 来自 中国
0x01 HIDS的背景- w3 E9 d/ `  H; Z
# r% H3 ^6 g9 y2 Z" _# A! _% F$ d
企业有各种安全防护手段,HIDS与网络流量监听一样, 是一种威胁检测的手段。HIDS(Host-based Intrusion Detection System)基于主机型入侵检测系统。与网络监听这种形式的主要区别是, HIDS的主要数据源来至于主机本身产生的各种审计信息。1 i  Q, x1 I1 }2 N3 {
各公司在构架这样的系统时, 多多少少都会面临时相同的问题,其中有一个共通地方就是审计数据的存储方案如何建设,我们回顾了一下,讨论一下HIDS的数据处理流程,与相应存储方案的优劣。; v: z9 z# |+ s# ]

  U, s* u  q7 I3 I0x02 HIDS与网络监听
2 |/ s$ ^' \+ C8 _& I) t2 S& a7 y/ T% Y- o0 S; _* y  O
通过在主机上安装一个审计数据收集的 agent代理程序,收集主机的相关信息。
6 j3 J, o# j$ L7 M# O2 HHIDS系统和其他的系统都很多的相似之处,也有着明显的区别。Agent安装收集数据,与网络分光流量监听对比最大的区别,在于要在机器上装Agent,这本身是成本(部署覆盖率,监控覆盖率),而网络分光只要将数据集中,就可以分析流量中的网络相关数据。
/ L( U7 w) A. s实际上Agent上收集的数据总量,几乎占到一半存储比例的还是网络数据, 比如:网络连接数据(异常链接、网络等待等)。
; x) S- W$ c7 h7 c某种程度HIDS与网络流量监听, 即互补又殊途同归。+ O2 V( X: X7 x  F7 T
说到相同的地方, HIDS与其他的安全信息系统,有很多信息本身应该具备的组织部分,比如数据的存储,数据的分析,让安全运维人员与整个系统交互,进行安全策略的地方。6 E7 p7 m% r: H
各大公司都有自己系统设计方案和建模方法, 他们用的审计数据源种类也许是相似的,大数据的存储方案也差不多, 建模的方法也是经典的建模方式,甚至有可能“攻击者”都是同一波人。' Q* ]- x$ K9 r) H% C
基于类似的背景,才可能将整个方案通用化, 产品化。没有形成产品,也可以制定一个通用的模型框架。, |$ W5 X" T$ J
0x03 数据处理流程7 P/ ~2 ~( I- v. M, L. X6 ~3 s. C. R% g
* W; U/ E& R7 b  ?# r" a' L
我们将整个系统分成几个模块,来看整个系统:
" u2 O4 Q! f1 ^# f' k数据源:主机服务器上有各种审计数据,这些审计的数据是整个系统的数据分析素材。账号信息、网络链接、登录信息、服务信息、处理器信息等。无论什么平台, 这些基本的审计信息几乎都是共有的。
& F: b3 Y9 A5 `我们用OSQuery举例,用开源方案说明问题, 可以脱敏。0 S0 w, ~' i# \" D" B
比如,取得当前主机的端口监听:
+ r! t  m3 x; B8 u
    6 ?4 {" c$ k6 W& t! t
  • ) r5 [$ o" L) G1 P! X
osquery>select * from listening_ports    pid | port| protocol|family | address    123| 808| 0 | 0 | 0.0.0.0市面上流通的入侵检测代理客户端(平台),很多是可以取得这些信息的。OSQuery是将主机各种类型的Audit信息,统一管理成了二维表(Virtual Table),提供了一个SQL查询引擎提供查询。
, w9 s  m7 q. w' g. `! t* U0 H0 x7 N- U3 }( \) o7 g6 q% b
OSQuery架构图
( C5 ?( k( @8 G
数据收集:面对各种主机审计数据源,系统必须要有一个数据收集能力。  H9 [# ~) A, Q/ E  C7 C
HIDS一个很重要的组成部分是Agent,  不只是安全系统才有Agent,像Zabbix这种监控服务也同样用Agent。数据收集Agent方法有几种方法选择:1.自行研发。2.开源方案。 , _5 o# o( r) c, p+ s! _1 G* ]
相同的目的:无论我们使用的开源方案,还是自研的Agent,目的都是一样的, 收集我们需要数据,服务器上的相关审计信息。只要能收集到我们想到的审计信息上这一点没有障碍,就达成目标。
  L0 q0 Z' t' [: \无论我们是采用开源,还是自研的方案,系统底层的很多都是相通的。以Linux的系统为例子看下图。- B( f8 R4 U3 A4 u& K$ Z
" m7 \2 n/ ]# x
OSQuery或是自研的Agent相当于图中的go-audit, 都是系统审计日志Client客户端调用者。使用pythonaudit和caudit底层调用的API都是系统API,区别是对各种平台的支持(跨平台),Agent的性能和健壮性。/ `, W3 w" M+ a( g8 e# i$ Z
[color=#777575 !important]自研Agent优点:对于自研agent来说,我们可以控制整个软件的逻辑, 尽情的加入我们想扩展的功能。
, q# X% t- ]- D  _, L6 D  C- w" Q[color=#777575 !important]自研Agent劣势:需要大量的平台适配,保证测试的覆盖率,不能轻易挂,没有社区的服务支持。
8 J9 y; D0 |; k[color=#777575 !important]开源Agent优势:对于开源agent来说,开源Agent被行业充分的测试, 可以稳定的在企业各种已知的平台上,收集不同平台的数据,Linux、Windows、MAC。自研的方案各大厂都有自己的轮子。开源Agent方案:AuditBeat、OSQuery、NxLog等等,可以根据规模和平台的大小进行选择,各种入侵检测方案。
! t) `6 ^" y. I+ u- F[color=#777575 !important]开源Agent劣势:需求的定制化和扩展性, 是否能适应企业审计需求,数据采集需求,后续是否会出现,软件停止维护等尴尬局面。
9 o' L: g. D. z  ~
 HIDS的Agent收集的数据,之前说过,占比最大的一块数据是网络相关数据(几乎总量50%),随着时间的推移,工具的进来,“Netstat”相关信息取得也发生了变化。' F, d8 y+ A; ]3 l0 E
3 a; u" U( f4 u
以上的图,可以看到工具是如何与操作系统交互取得底层数据,这种圆环套圆环,调用套调用的依赖关系, 如果都能简化成SQL这种DSL业务语言,简直就是太方便,把各种分类的审计信息全变成虚表,让安全人员专注于业务数据的审计和策略的构建迭代, 支持一下OSQuery这种SQL的设计方案。& n) {( B0 D; ^* c% Z
还有一个Agent结点集中管理后台问题。
' V9 l+ |% {( \$ X1 z; |OSQuery后台管理是有商业方案,但那不得花钱吗!所以有开源方案,如下:
; K7 N' \6 p" p& G% x) m7 _
[color=#777575 !important]https://github.com/shengnoah/osctrl# ~9 ]) k' V/ c, \: u' _# O
0 A& {& v  L0 I, u
osctrl是jmpsec推出的后台管理系统,Freebsd、Ubuntu、Debian等各种平台都支持。3 b; P% J1 u$ w
如果您使用的本身是基于ELK的方案,没有Hive、Clickhouse、Spark这些什么事,还可以选择Auditbeat方案, 是Elastic同门产品,并且Elastic还直接支持了SIEM,至于适用不适用企业就具体分析。
8 b2 p  F+ y) x" k# |- l1 |这样像SOC/SIEM类的产品, Elastic、Graylog、Splunk都有解决方案。前两者都有开源和企业版,后者是一定数据量之内处理不要钱, 过量就要钱,
3 }; I, r9 Q0 u( ~如果企业的数据是,几十T,几百T的数据量,不花钱是不可能的。排除软件和运维成本,数据本身的生产,消费,存储的硬件成本就很明显的硬件成本。+ F! R- r' v0 E0 w* e; U) {) S
0x04 存储方案
) N( `( S( F7 ]) p- Q# A1 v+ ?9 S, m# ~' Z5 F+ G# |! c3 ~2 Q
数据的存储:信息系统的一个核心是数据存储,数据库要保证基本的读写性能,扩展性,高可用性。
6 u) s. Q, q. `9 l2 d现在有成熟的大数据存储解决方案。( K. R2 c- W* b, {

- x3 L% _) A  b: [8 G; L3 Z
ES集群核心存储方案(图2)
/ y9 T5 `+ M" r- a1 j# i
ES:ES集群存储,最常见大数据方案之一,在实时计算场景, ES可以满足我们实时处理数据的要求。但同时ES的成本并不低。, F6 l* n6 O  u' J1 z
经过实践,ES集群为了稳定高可用,最少要用三台机器做结点,存两份数据的(1G的数据, 实际要用2G空间,有效使用空间低于2G),放到3台机器的不同分片, 这样才可能保证数据丢了可以找回来,要想达到数据访问的高性能,还需要配置高性的SSD磁盘。这都是钱。
3 Y, I& Q/ Q8 G: _1 G只有ES不行,还需要配套的Buff队列Kafka前端机,前端消费机,只有带宽达到要求,缓存达到要求,才能保证存储服务的QPS。2万QPS至少12核左右的CPU,类推累计总消费量。
! O: c" ?! [+ N5 Y' h2 d; H" DES优点:实时计算快,生态工具多。ES缺点:成本相对贵,需要配套的运维和调优。
* F8 r/ g/ y* h/ K需要专家配合才能让整个系统表现良好,默认的设置和优化的设置区别很大。' e3 ~- V2 k& S

9 e' Z/ e  n6 Q# E8 U* a8 f  s
ClickHouse集群核心存储方案(图3)

$ C% ^9 z. g" g. R) ZClickHouse:ClickHouse支持Mysql协议,存储空只需要原有数据的5分之1,1G的数据,200MB就可以保存(向高总致敬)。 并且检索的速度更快,相对使用机器更少。5 q' R; p6 l2 m5 I* s9 D
OSQuery在收集取得审计数据时,使用的SQL结构化语言,ES也可以支持针对Index的Mysql查询,但从速度性能上看,ClickHouse最有优势(个人体验),并且ClickHouse本身就原生的支持SQL。+ }( n4 f; o0 \* A9 |. A( h
如果熟悉ClickHouse技术栈,Clickhouse也是一种主案,Clickhouse也同样需要前端机Kafka队列,也需要写Kafka数据,只是由原来的从Kafka写入ES,变成写入Clickhouse。
1 M! k7 a* N" C! I& ?" O& O: m
[color=#777575 !important]ClickHouse优点:存储空间小,速度性能快, 学习曲线不陡。ClickHouse缺点:生态没态ES多,需要自己实现一些服务工具链。
+ z! Q0 V3 O8 m2 e' t
- Y1 ^- k# d, o& ?4 i' X- p
Graylog集群核心存储方案(图4)

3 L+ y1 I$ R! d, W* ?: d2 LGraylog作为一个开源解决方案,本身就把自己定位成了SOC/SIM系统,新版的Graylog有审计Agent的对接,OSQuery方案,适应多种平台的审计数据采集,(Linux、Windwos、MAC),支持威胁情报管理。Graylog是基于Java技术栈的,整体打包了Kafka和消费程序,由Graylog组成的集群,整体解决了数据前端数据缓存到消费到ES上有服务流程, 还有Buff数据持久化等各种特性,这个之前糖果的实验室的公号和FB专栏发布的文章都有介绍,不太具体展开。Graylog在与ES配合的过程,需要优化配置才能有更好的性能表现, 默认的Graylog原生需要调配的,不然可能会达不到您的预期,在数据管理上造成困扰, 有时不是Graylog本身的问题,是配置方案选择的原因,需要专家积累和测试。! D6 [# T$ J3 x3 }, Y! u7 S
Hadopp集群核心存储方案5 H3 s) i1 @: V+ f9 Q
Hadoop:Hadoop要求存储空间是原文本的3倍, 对于中小规模的系统,几千台的服务器。如果用10T的数据存储,整个的实际的空间就要30T,而实际实时性上,不一定比ES和Clickhouse快。
, }5 m& p: v' T$ b; `( T8 X# ^数据存储的占比,HIDS几乎50%数据存储空间,都是在存储网络相关数据,其他类别数据5倍,甚至是50倍。HIDS系统的大头数据,是主机网络相关数据。9 `6 t- G! q4 b2 D- P
[color=#777575 !important]优点:功能强大,生态强大缺点:基础设施构建成本高,需要专业团队运维,不是一天两天玩的转。
6 u8 @0 R1 f: K3 F3 B/ e
除了以上的方案还有Spark等其它的方案,成熟的技术在公司内部本身都有(ES、Clickhouse、Spark、Hadoop), 最后我们根据过去的经验和当前形势综合考虑,最后选择ES方案。
  ~& I8 \- W) X7 T 数据分析:随着积累沉淀的数据变多,存储多不意味着系统产出的收益多。基于规则模式的古典分析模式,在超大规模的数据存储过程中,存在视角上的盲点,和人力运维的巨大成本。威胁变化多样,我们需要的不只是指那打那规则策略系统,需要系统有举一反三的能力, 有联想威胁能力。基于AI、基于NLP、基于规则、基于语议分析都可以数据收集后,对原始审计数据中的威胁进行发掘。HIDS收集的数据有时可对应的算法,是否可能被有效的挖掘出数据, 不是一概而论,因为太多数据类型的审计日志, 需要挖掘建模方法,有时模型和威胁元数据是同样重要的。6 v) P, |- j% r
数据交互:整个HIDS最主要的操作者还是安全运维人员,让HIDS可以让安装运维人员配置策略,像无数安全分析系统一样,将威胁信息统计汇总。对于闭环的系统来说, 不需要过多的确认, 直接将威胁信息推给安全人员,直接响应是最理想的,这样运维人员,基本上不上后台系统,等着系统推送威胁给我们就好的理想状态。
+ f& q% k% z5 w# N4 Z
[color=#777575 !important]“威胁告警是观点,不是结论。”一个百发百中的威胁发现系统,是需要完备的数据证据链路,提供支持,HIDS也只是数据链路上的一条。
% M) e9 y$ q+ u" w: r# z8 |; k7 ]
因为证据链不全,才有了后期再分析判断的中间过程, 如果证据事实确凿,行动就行了,关键是证据链不全,最后还是需要先分析, 再决策,然后才能不瞎行动。
' P" s$ o0 T. L) z0 k2 K; |0x05 总结2 u. }/ y! N  I

" Y* a2 _7 H+ U  x0 p# Q8 p经过几种方案的对比, 最后我们在ES、Clickhouse、Hadoop之间选择了ES集群为中心的数据存储方案,只是在目前这个阶段,基于当前规模和成本的计算,综合数据威胁分析实时性考虑,我们选择了一个相对比较适合我们场景的方案,不同企业具体情况具体分析, 但是选案的原理和资源计算方法是可以参考的。
7 m) ^! {% O% f: N, W对于那些,没有成本预算自研HIDS中小型公司,可以选择多种开源方案解决OSQuery、AuditBeat、OSSEC总有一款适合您。
; C8 P" S3 ?: J) j8 D参考/ W. U& l$ Y' J( X8 c( z9 ]
$ N% w/ T& l# I1 u; ]+ m& H
Syscall Auditing at Scale
  B$ N: E" v+ ]: Q' ]) j+ }
[color=#777575 !important]https://slack.engineering/syscall-auditing-at-scale-e6a3ca8ac1b8
( I. \# o9 K& e5 }1 n; M3 R7 b
*本文原创作者:糖果L5Q,本文属于FreeBuf原创奖励计划,未经许可禁止转载

: ?& u4 w5 @4 V8 _2 y% Z" p. h
& ~; ?! m8 P- z1 ?$ L& N  t9 h
精彩推荐" k- D% h# `" U+ D
. X1 K3 ]+ r) v3 T+ q! J. }

: w! d1 r9 A2 X
! J0 n8 N* J( z

+ [* j! ]9 Z6 ?: B, z4 m/ M7 |8 P( |0 x: f& {) j6 W- ?) b
来源:http://mp.weixin.qq.com/s?src=11&timestamp=1577106005&ver=2052&signature=TOp2rWi5tKlIEFwUHz3u7DT8-J9KpsMHyuuWNIrRy21lhopqTD0ukz7SndieKHTIernqgs3kZKI6rwJOD58oI59HVhFJ3n*jFdBv00VgP9CBeoI1-d9VRMCWrgAFjhsb&new=1- T2 e: Q# V; x3 w* @/ y# g6 a
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2025-11-30 16:01 , Processed in 0.051891 second(s), 27 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表