|
|
目标识别、物体检测、智能分析……随着深度学习算法的进步,安防技术取得了突破性进展。深度学习被看做安防行业的革命性力量,大大加速了安防的发展过程。) Q+ I( h8 m9 [8 {0 r6 E7 P
+ h1 ~" S% }; [( x
在这样的情境下,全球人工智能计算机视觉领域奠基人之一、约翰霍普金斯大学教授艾伦·尤尔抛出“深度学习(Deep learning)在计算机视觉领域的瓶颈已至”的观点,引发业内许多专家共鸣与热议。8 |( ?3 x; a3 f
. l1 r2 @/ S& W h8 L深度学习变革安防行业
( K; I* F0 t4 l$ D/ Z+ o6 E
+ }' H3 w( r3 Z: m1 K1 V目前,深度学习的研究领域主要集中在语音识别和计算机视觉方面,而计算机视觉作为人工智能落地过程中的“显学”,被各行各业所重视。对拥有海量视频图像资源的安防行业而言,深度学习能够对这些资源进行分析,实现利用。. n; H8 ?9 C9 A2 H
' A3 a t2 |7 @
例如:在人脸识别方面,深度学习大幅提升了复杂任务分类的准确率,可以实现人脸检测、身份对比、活体检测等功能;在智能视频分析方面,可以做到人、非机动车和机动车的视频结构化研究。基于此,安防行业一跃成为当红“炸子鸡”。4 z5 w/ d$ p# m7 ~, A
5 X, k# w: Q5 g7 Y: ]
成也是“标注数据” 败也是“标注数据”
6 _; e/ ^7 H' i; I/ n3 `$ y$ {' T, y* i% a
然而,深度学习却有很多局限性。众所周知,深度学习需要基于大量的标注数据,这些数据需要由人类进行标注,而人类的弱点则导致了深度学习的许多缺陷:8 B& l: U8 T6 k5 n4 l! I+ X
' ], B- t% P! K5 f5 S
大量的数据需求使得研究人员的焦点过度集中于容易的任务,回避重要且困难的任务,因此,在基准数据集上,深度学习表现良好,但脱离数据集,进入真实世界后,就有出现重大失误的风险,尤其是数据集中不常出现的情形,例如,在动物园监控场景下,“相机出现在猴子手里”等情况。
Y; h5 |. F7 U" p* I1 `
3 [( v. o- B6 d1 h9 _$ B此外,从组合学观点来看,真实世界图像的信息量无疑远远大于人工标注的图片信息,这使得深度学习对图像中的变化非常敏感,导致系统判断出错,这对训练和应用都提出了巨大的挑战。7 Q/ l; c) w3 A7 M6 S2 L' _
* r" |9 q) }- Q) o/ i, V; A( R如何补齐深度学习的短板?
" W, a/ F- c2 ^2 m2 T4 t+ ~5 b$ j- |4 c; v
深度学习的短板要如何补齐?既然深度学习的关键在于大量人工标注的数据,那么,解决数据带来的问题,或许可以继续从数据方面着手。" W# M- `1 O1 T C
; _* @$ K7 h: I, _! t# {一种解决方案是简单地扩大训练数据的范围,即通过更多的训练数据使网络自动吸取经验、已更快地学习新任务。这听起来更像是人类的学习方法。
/ S$ k& A( l; C8 g( Z
! L+ C c4 S( d% F1 T不过,人工智能是对人类智能的模仿,而深度学习只是众多AI技术中的一种。人类本身并非主要依赖深度学习,并且可以收集多维度的数据,借助“触类旁通”的能力来进行认知,因此,在安防行业,深度学习需要与知识图谱、机器记忆、语义识别等不同维度的手段相结合,弥补自身短板。7 \/ \) @5 |# {* l
3 O* i }4 d9 ~; Y4 u4 z' P结语:总而言之,在未来一段时间内,深度学习仍将对智慧安防行业的发展起着积极的推动作用,与此同时,业内人士也已经明晰了深度学习本身存在的局限,并对此进行探索,以弥补其不足。
. n- `; u/ Z. | \1 R9 ?% e* Y# z* J
来源:http://mp.weixin.qq.com/s?src=11×tamp=1576661405&ver=2042&signature=4otSY4g5yNuYkrTqlGfq*w1LUU72E7A0USxppgG*wo2qXYNnO6gzwz4RADrFahSEhcA9in0hHFor-kxOMf6A*-t2IkIgq6v24C66E74feV57u5723CmJdtHJCrNpCGKL&new=1& X- s0 d( e( k- \2 n! a, ?
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
×
|