京东6.18大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 593|回复: 0

机器视觉公司,在玩一局玩不起的游戏

[复制链接]

1650

主题

685

回帖

7037

积分

论坛元老

积分
7037
发表于 2023-4-16 01:19:59 | 显示全部楼层 |阅读模式 来自 山东济南
原标题:机器视觉公司,在玩一局玩不起的游戏
* x6 E" ?  q, j" B                          有个著名咨询公司曾经预测过:未来只有两种公司,有人工智能的和不赚钱的。
% m; `+ s# t0 E8 O$ {4 E 它可能没想到,还有第三种——不赚钱的AI公司。8 i5 j5 `+ [$ ~; p0 @
去年我们报道过“正在消失的机器视觉公司”,昔日的“AI四小龙”( 商汤、旷视、云从、依图),在商业化盈利上各有各的不顺。不过,随着GPT系列产品又掀起一股“大炼模型”的热潮,这些AI公司又支棱起来了。
! E; G! e9 H- l3 [% z7 G# J 商汤科技此前曾披露,下一步的发展战略是通用人工智能(AGI),继续推进“大装置+大模型”,并发布了1800亿参数的中文语言大模型 “商量”。/ q. T5 ^, U0 D" N3 `5 X4 N: G

7 m" B' r* l4 W: c8 V  k 旷视科技也表态,会坚定投入生成式大模型的研发,保持核心技术能力长期领先。6 z! p% o3 ~! `% m5 R
云从科技公开的定增预案中,为云从“行业精灵”大模型研发项目,募集资金不超过36.35亿元。9 x3 A' r4 S6 W5 ~( H
依图科技没有公开消息,但在此前的融资中曾因AI大模型和国产芯片等被看好。
/ w& Z! V- L* S4 P / x) y6 K9 ?# f
无论是上一轮,以BERT、GPT-3为代表的“预训练+精调”大模型,还是此刻正红火的,以ChatGPT、GPT-4、文心一言等为代表的“预训练+精调+提示+RLHF(人类反馈)”的大语言模型,已经成为各大头部科技公司“秀肌肉”、相互竞争的重要工具。
$ o. p$ N! u0 Y2 Q  c; g. u4 D 谷歌、百度等大厂跑着入场,各路大模型“神仙斗法”。这场狂欢派对,成了机器视觉公司不得不玩、又玩不起的游戏。
3 ?8 ~+ @$ j2 @( K 尴尬的“长衫”
! Y2 v! t, J3 Q; X9 Q 最近,CV公司参与到大模型这局游戏中,出现了这样的画风:语气一会儿大,一会儿怂。
6 k* l6 Z3 A: O( I' D, E* p 在公开信息中,都表示自己会加大投入,去解决基础技术、基础问题。云从的管理者说要“投一二十亿解决算力问题”“我们是技术公司,研发投入不会低”;商汤的有关人士称,要做“统一化标准化的大模型”“加速构建通用人工智能的核心能力”;旷视也对标OpenAI,要“做影响物理世界的 AI 技术创新”。, \# s: \# M# y' O- j6 D$ T- {& j; q8 U
4 i' x# @. s5 k  s# e
谈到大模型技术和产品本身,底气又不足了。
' m9 P4 C0 u6 x3 n! W5 w 这个说“基础大模型要有长期布局,NLP难点很多,短期内与境外领先企业会存在较大差距”,那个说“中国AI公司有商业化的压力,不能像OpenAI那样不计代价的创新”。$ L8 L/ h+ n+ r- r4 ?9 w
“预期管理”算是被你们玩明白了。
# i6 ^7 x: V# O0 I7 h( v 年轻人流行说自己是“脱不下长衫的孔乙己”,CV公司对于大模型这种不尴不尬的处境,其实也和“孔乙己”有相似之处。1 ^1 G- q* T4 E# U; N8 N
CV公司在底层技术、基础设施、人才、资金、生态等领域的积累,不如头部科技企业优势显著。所以,自然也不可能真的跟谷歌、OpenAI、BATH(百度、阿里、腾讯、华为)正面打擂台,烧钱去做通用的基础大模型(foundation model)。$ J: ^- P0 f0 o
新一轮大语言模型,完整技术栈、工程实现能力、算力成本、数据积累等都有极高的门槛,AI公司自研大语言模型的难度前所未有。 OpenAI 在2022年就花掉了5.44亿美元,收入只有3600万美元,这是国内CV公司不具备的家底儿。
& B/ ~! O8 S- g 当然,外界也不应该过度放大CV公司的责任,非要将巨头才能承担的创新压力放在CV公司身上。& v3 K  K0 A  ^5 K. a5 l# z
但是,CV公司又有着“AI-native原生企业”的光环,也确实积累了很多技术储备, 所以也不能直接躺平,像ISV集成商、软件公司一样依附大厂,欢欣鼓舞地等着集成或调用API就好。
) X, l, s0 C. v, M" s( _" f 昔日的“AI四小龙”还是要撑起“技术自立”的架子,努力融入这波炼大模型的热潮里,于是,又将模型数量和参数规模的比拼,拉升到了新的竞争水平。( r! u& S! [" \
比如云从有NLP、视觉领域的预训练模型,商汤在“AI大装置SenseCore”的基础上,构建的日日新大模型体系就包含了通用视觉模型、中文语言模型、图片生成模型……其中,仅“商量”大模型的参数规模,就和GPT-3差不多。
) T( ]/ E  ~4 o8 `( ^! v 今天大家都感慨,孔乙己脱下长衫不容易,换个角度,“大模型”这件长衫,CV公司是不是有必要穿上呢?
9 F! U* Z: t& M& T3 E9 Q  t% F5 c. x+ \ 玩不起的游戏" ~2 [* L# C  O
从2018年的预训练大模型到2023年的大语言模型,大模型走过了一个从萌芽到繁荣的小周期,种类、功能也丰富起来,我们已经见过很多AI企业、高校和科研机构、行业公司所打造的各种各样的大模型。* g& P) ]* ?  }
问题来了:4 s: s$ `# F! U1 V0 e  S, U
第一,大模型的“智能涌现”,需要在超大规模的数据和充分的训练才能出现,只有不计投入的基础模型能做到。4 I+ ~+ s  f, \! {5 Y4 T
很多面向行业的预训练大模型,由于数据和训练不足,无法达到“智能涌现”的临界点,这也是为什么此前预训练大模型那么多,却只有ChatGPT的到来,才证实了“通用人工智能”的可行性。
% H% b* f. l0 A 在基础模型的鲁棒性、泛化性极大提升的今天,一味盲目地“训大模型”,结果就是“大小班同上”,基础大模型和行业大模型一起,消耗本就不充沛的算力,进一步推高计算成本,让AI企业背上更重的负担。
5 ^+ w' F1 e& W7 a1 S * |/ H1 {- [% l/ t' H$ m' n
第二,大模型的商业化路径,标准化API是比较基础的一种,而基础模型API有虹吸效应。
# C9 S" v1 i; j$ W* k6 i 简单来说,通过API接入AI能力,技术是决定性因素,基础模型的能力强、受众广泛,很容易通过API经济完成商业化,而行业大模型面对的领域较窄,很难通过“规模效应”来摊薄研发成本。4 b9 [! {! g  |' R
随着一个又一个大模型被推向市场,大家恍然发现:原来我们并不缺大模型,缺的是商业化路径。
) b8 a2 I+ c& s3 [7 L5 ?6 ~ 目前,大模型的商业化还比较有限,C端通用产品贴成本定价,B端盈利前景不明朗,根据 A16Z 对美国 LLM 创业调研,纯模型厂商只能拿走0-10%的价值,并且要长期对标OpenAI的定价策略,会面临很大的商业化压力。) ?: n2 J# w4 U$ s. Z  n$ \7 @4 _
通用基础模型和行业大模型一起面向市场和客户,结果就是,在商业价值分配上产生博弈。AI巨头“神仙斗法”,打造出的通用基础大模型会吸引产业和用户的最多关注。$ k' ]' W; h+ `" {: w0 P
而大量行业大模型,要么在训完后无人问津,浪费了前期投入;要么无法满足产业需求,商业化前景受限;或者跟通用基础大模型的能力有冲突,导致商业化达不到预期。
. F* }( F' e0 ]) _ 同为AI创业型公司的出门问问创始人李志飞,就在一次采访中直言:“不是所有人都要去做通用大模型,贸然进入,难度很大,商业竞争很激烈,想不清商业模式到最后会很痛苦。”9 T; ]: ?# y; M) h9 F0 f
所以,大炼模型,可能是CV公司目前玩不起的一局游戏。8 X: W$ z$ ^6 a! T) A
轻装上阵的路
# y5 Z/ y8 ]9 y) X+ d 你可能会问,现在大模型这么火,不训大模型怎么能吃到这波红利,在新一轮AI热潮里建立优势呢?3 f4 Q' F1 d" Q' b% O4 D
CV公司要轻装上阵,可能要尝试这样几条路,去探索大模型热潮中的机会:
$ Q5 H. Q5 ]1 O  W# [ 1.跟基础大模型平台建立更紧密地联系。
  X5 ]8 E: B6 m& w' X 自己开发大模型难度太大,训练成本、存算成本过高,社区生态支持也不够充足。可以站在巨人的肩膀上,接入基础模型的能力打造小模型,与基础模型的商业模式形成差异。1 a$ K) A; S  W
此前CV公司盈利难的一个挑战是:机器视觉要进入腰尾市场,存在着海量的碎片化需求,客户体量比较小、数量多,项目规模不大,这对CV公司的开发效率提出了很高的要求。
: p! @4 {! {5 {1 p1 c 通用的成熟型算法,无法满足细分需求,但全靠算法工程师来定制开发不现实,也不够经济划算。基础大模型,将算法开发推进到工业化阶段,减少了编程工作量,提高了开发效率,定制化算法的性价比提高,也就更容易为企业所接受。' \0 e+ }$ P. Q9 C8 F4 x
对于CV公司来说,算法进入工业化大生产阶段,将碎片化需求全面覆盖、规模化复用,整体营收能力自然也就上来了。7 N- M' Q/ |3 o# \- F0 H
2.深入到具体行业中去,构筑能产生差异化的应用产品。0 [$ M1 F6 k' k
基础模型要走向产业,必须进一步精调,CV公司就有相应的优势。
7 U$ A8 |' Y0 C7 z$ v4 H' T) I  J/ P8 n 很多高度专业化或复杂的工作,比如金融、建筑设计、编程、办公、客服等,需要精准的垂类知识;一些特定领域,比如医疗、司法,非结构化数据比较稀缺。没有足够的语料来“投喂”,基础模型在这些场景就会欠缺一些“常识”,比如GPT-4就写不好中文诗。; G! W3 w$ S9 {  {
据说,GPT-3.5的训练数据集全部为私有数据集,其中关键的SFT训练集,有89.3%的数据是定制的。
" d! C$ Q* l% \! u CV公司大多有自己聚焦的垂直领域,比如依图的智能医疗,旷视的物联网,云从的智慧园区,商汤的智慧城市、智慧出行等,可以结合在相关领域沉淀的差异化数据集,利用精调或prompt的方式,打造出更加精确、可靠的小模型,更容易部署,为AI应用加速AI的快速落地。0 t; N  C8 F% G8 w
3.建立更具韧性的生态合作护城河。8 H' [: C; n% q' @. a
CV公司在大模型技术上的积累,就会变成AI 2.0时代的底牌,也可以作为与AI巨头、算力提供商的生态合作筹码。
' o3 D6 A  \* U! }& ? 比如这一轮大模型,对提示学习、人类反馈的强化学习RLHF等提出了很高的要求,让模型在人类的引导下,发现知识的使用方式,理解人类的偏好,这在国内都属于很新的领域,提示师、专业标注师很少。有媒体报道,OpenAI的标注员,本科学历52.6%,硕士学历36.8%,这就不能全部靠众包模式来进行数据标注,必须拥有自己的垂直领域的标注团队。9 C2 g( k7 y' ~& e9 K

8 E' w5 q. J: D7 } 比如医疗领域,医学图像还没有建立起自然图像那么大级别的数据库,而对医学图像的标注是很难的,不像自然图像标注,普通人一看就知道是什么,医学图像的数据标注涉及到器官、癌变等专业知识,就需要针对性地积累。
% I, ^) G" O- v5 j4 P 这样的高水平技术人员,恰恰是CV公司这种AI-native原生企业的重要资源,可以与产业链上下游开展更紧密地合作,从而保障产品和服务的竞争力和可持续性,吸引客户更多地将数据放入自己的产品中,形成马太效应。
: K5 Z- p1 L9 S5 ] 大模型开辟了一条蕴藏着极大价值和可能性的新路,被寄托了太多期待和野心。要有大模型能力,不代表要自己训大模型。8 D7 _* D! R/ x9 k
重复建设的热潮终会褪去,届时,大模型商业化的考验才刚刚开始。1 _% Y& T4 W" `. K4 @" @
对于CV公司来说,脱下“大模型”的长衫,是为了留住商业化的“底裤”。集体弄潮只是只是一时热闹,保存实力才能在AI江湖中走得更远。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )|网站地图

GMT+8, 2025-12-20 18:46 , Processed in 0.039738 second(s), 24 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表