|
|
2 z0 N& r& N# e, s S1 |
! Q' ~" W0 s' Y9 L& q2022 年 11 月上线以来,OpenAI 旗下的 ChatGPT 几乎成为全球最火爆的软件应用。一个可以支撑的数据是,ChatGPT 用户量达到 1 亿花了 2 个月,而上一个全球现象级产品 Tik Tok 则用了 9 个月。
- g+ R# l# [8 @2 H5 h基于具有 1750 亿个参数的 GPT-3,也是目前公开发布的最大规模语言模型之一,ChatGPT 具有广泛的语言理解能力,自然流畅的语言生成表现,以及更快的推理速度,能够在回答问题、搜集资料、写大纲、写代码等自然语言处理任务上,超越其他先进的模型和人类表现。( `6 F4 s2 t+ {
需要注意的是,ChatGPT 在全球快速收割用户的同时,其背后提供算力支持的英伟达也赚得盆满钵满。( A" z; A: M- f4 Q! m9 J
据花旗集团预估,英伟达 ChatGPT 相关业务一年内销售额达到 30 亿 ~110 亿美元。英伟达 2022 四季度及年业绩报告显示,其 AI 收入创下历史新高,四季度收入 36.2 亿美元,同比增长 11%,全年收入增长 41%,至历史新高 150.1 亿美元。 X8 d' W, {) J8 ~2 S% P
此前 OpenAI 在 2021 年的估值约为 140 亿美元,在 2023 年 1 月 23 日微软追加投资数十亿美元后,OpenAI 的估值实现了翻倍,目前已经达到了 290 亿美元。
2 E: g! e6 _+ w% N; F英伟达在 2023 年初市值约为 3600 亿美元,随后凭借 ChatGPT 的火爆,市值在两个月内增长超过 2100 亿美元,截止 2 月底市值已经达到 5700 亿美元,7 }! Y3 _/ @8 `! a2 B) I5 R4 M
仍在增长的AI巨浪
) o; [% ~3 ~* y0 i8 ?; G$ n
. c M: O* u; e# B( G* P% @ [' K) s# H J! Q7 x. x) f9 {: h
) D! Z% g1 h6 ~# c/ G从主要的工作流程来看,ChatGPT 的分为训练和推理,二者对于算力有着不同的需求。5 N6 Y" K. I! x3 e
相比于回答用户问题的推理阶段,ChatGPT 的日常训练对于 GPU 算力的要求更高。在训练阶段,ChatGPT 需要反复地进行前向传播和反向传播操作,用来优化模型参数。
! u9 S) F" N( R/ U2 f" b" l- p前向传播是指从输入数据开始,按照神经网络的结构逐层计算,直到得到输出结果的过程。具体到 ChatGPT 的训练中,前向传播是就根据当前的网络参数和输入文本,计算出每个单词的概率分布。; g* I( A0 J7 E2 R! ~
反向传播是指通过计算损失函数关于每个参数的梯度,从输出结果开始向网络输入逐层传播,更新神经网络的权重和偏置值,提高网络的准确率。, E; d* F, Q. l( {+ @: g% a" e
在 ChatGPT 的训练过程中,前向传播和反向传播一般会以百万次甚至上亿次多次迭代执行,因此只有大量的、高算力的 GPU 集中运算,才能达到要求。公开数据显示,GPT-3 单次训练成本就高达 460 万美元。4 F! `4 V6 d2 y2 h g
根据中信证券研究部数据,此前 GPT-3 在训练中使用了微软专门建设的 Al 计算系统,由 1 万枚英伟达 GPU 组成高性能网络集群。3 E4 ]. t1 F; Q: R6 ]
目前英伟达主流的 AI 芯片中,A100 芯片单颗市场售价约为 8 万元。而 A100 的升级版,最新的 H100 芯片单颗售价约为人民币 24 万元。这意味着,仅仅是采购芯片一项,ChatGPT 就需要向英伟达支付 10 亿元以上。
4 S& G: y- ?( k/ {据 Investing.com 报道,GPT-3 时代 1 万枚的英伟达 GPU,已经随着 ChatGPT 升级到 GPT-3.5,增至 2.5 万枚,且增长仍在继续。随着谷歌、百度以及更多的类 ChatGPT 项目入局,以 ChatGPT 为代表的 AI 算力和 GPU 相关需求,将会继续提高。
. B/ J$ s) h# A/ T+ H4 r W9 p垄断靠生态,绑定靠产品
' [, C- T9 m8 c
) i) a7 b% F9 d% p/ i$ [6 K
) s+ k: H2 Y5 C, e( }. ~5 C f' o
7 [( y- D0 H# b( p: N根据 Verified Market Research 数据,2022 年第二季度全球 GPU 市场中,AMD 和 lntel 则分别占比 20% 和 1%,英伟达的市场占有率为 79.6%。相比于 2021 年第二季度的 75% 的市场占有率,英伟达领先优势还在在不断扩大。
" \# ]! u$ p% b* Q2 C0 b之所以能成为 ChatGPT 的独家供应商,主要因为英伟达在 GPU 领域完整的生态系统、多年的技术积累和产品表现,这些优势为其在 AI 领域提供了支持和应用基础。
/ F$ l- M2 ~. h$ v6 e. |其中 CUDA(Compute Unified Device Architecture)架构是由英伟达开发的,这是一种 GPU 并行计算平台和编程模型,可以帮助开发者更加高效地使用 GPU 进行并行计算。$ [& D' A/ X4 _& Z* L9 p
研究机构 Gartner 分析师盛陵海称 "CUDA 是通用 GPU 的开放平台,行业开发者已经用惯了,就好像 Office 软件,虽然也有替代产品,但是几乎很少有人选择替代。"
. g- x' z) y: x' ]0 M8 k' i$ F9 f在 CUDA 问世之前,英伟达的 GPU 仅是用于在屏幕上呈现图像的图形处理单元。然而,CUDA 技术的推出让 GPU 不仅能够进行图像处理,还能够进行高性能计算,从而使 GPU 具备了解决复杂计算问题的能力。如今除了电脑,智能汽车、机器人、VR 头显,各种计算平台都在使用 GPU。
( z4 a7 t; M' _/ A" ?2006 年问世之初,英伟达就开始了对 CUDA 系统在 Al 领域进行大力投入和推广。彼时,CUDA 系统年营业额只有 30 亿美元,但英伟达每年需要投入 5 亿美元的研发经费更新维护;另一方面,为迅速实现对市场的占领,英伟达还为美国大学及科研机构免费提供 CUDA 系统。% e8 g3 R7 r. `( j2 x+ v! [
建立了通用 GPU 的最大开放平台的同时,英伟达也在通过领跑行业的产品绑定超级应用。
# h0 T1 _ [0 S# u: W6 W例如,NVIDIA H100 拥有 800 亿个晶体管,单芯片设计,采用台积电(TSMC)的 4nm 工艺制造。英伟达 H100 的设计是针对 ChatGPT 所采用的 Transformer 类预训练模型定向优化的设计,提出了 Transformer Engine,集合了新的 Tensor Core、FP8 和 FP16 精度计算,以及 Transformer 神经网络动态处理能力,可以缩短此类机器学习模型的训练时间从几周至几天。/ t! g6 x- ?. p. v
此外基于 H100,英伟达还推出了 DGX H100,专用于训练,推理和分析的通用高性能 AI 系统,集成了 8 个 H100 GPU,拥有总计 6400 亿个晶体管,总 GPU 显存高达 640GB。2 ]# e, i6 Q0 x1 K
而英伟达的竞争对手们,AMD 和 Intel 由于缺乏类似 CUDA 的生态支持,且本身产品性能也比不上 NVIDIA H100,因而在 AI 芯片领域只能与英伟达的距离渐行渐远。
' p, C, m, }; c4 W9 C此前,AMD 和 Intel 也分别建立了 ROCm 和 one APl,试图建立自己的生态,摆脱英伟达的 CUDA,但最终这一努力并没有成功。此外,AMD 和英特尔目前还没有针对 Transformer 类预训练模型定向优化的 GPU。这意味着,英伟达将在很长时间内成为 ChatGPT 的唯一 GPU 供应商。
+ K3 B$ }: X5 m(本文首发钛媒体 App,作者 / 吴泓磊,编辑 / 饶翔宇)
# v, _; W, c, H, ~0 g更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体 App |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
×
|