京东11.11大促主会场领京享红包更优惠

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4409|回复: 0

Facebook:把握好三维世界,才能把握好AR/VR的未来

[复制链接]

12

主题

0

回帖

10

积分

新手上路

积分
10
发表于 2019-10-30 22:35:04 | 显示全部楼层 |阅读模式 来自 中国
hi188| 编辑
% O. n: a5 p; t
近期正在韩国首尔国际计算机视觉大会(ICCV)上,一大波的AI研究继而公布,Facebook计划发表40多篇论文,其中我们关注到2D照片下三维场景重建与内容理解,等等3D图像分析的研究。
' [3 Q; J$ a+ E. F4 a: \这些有什么作用呢,我们知道随着5G技术和千兆宽带的普及,届时的互联网媒介形式势必也会迎来改变,其中以AR/VR体验的三维形态的媒体内容被看作重点方向。9 Q. l! [6 p% d' u
随着场景形态逐渐向三维转变,届时将会迎来一个高度逼真的虚拟世界,而三维内容的理解也将变得更为重要。例如现在的AI技术可以很好的识别2D照片/视频中的物体、动作等等,而到了三维场景中又会迎来新的玩法。
; {1 u$ A1 f8 j# d3 g8 Q: N
9 a6 f( C3 F4 A' \( q) ?, {5 i, BFacebook AI研究院今天发布的一篇博客中,着重提到了其在3D内容理解上的努力。. V% z4 c( a0 S7 B1 B& y
文章中提到,想要了解周围的世界的前提是,AI必须能够理解三维视觉场景,这种需求不仅仅体现在机器人、导航、AR/VR等方面,甚至在2D照片/视频中也得能够正确识别出其中的一个杯子的三维形状等等。
+ \* f9 a/ l2 G* M以下的几项研究,正在以不同但互补的方式来推进三维场景解析技术的发展。! G& C7 h  W; K
    % H& V" t; h5 d
  • Mesh R-CNN,一种可以精准预测现实环境中2D图像中物体的3D形状的框架,其可以检测复杂的对象,比如椅子腿儿、被遮挡的家具等;
    5 l* ]8 U& q3 A% h1 P9 Y2 y* D
  • C3DPO,一种在2D关键点注释中,提取出可变性对象的3D模型的方法,已用于14个类别的对象,通过2D关键点标注实现,无3D标注信息;3 G' C8 P/ ^$ x- _: o8 d
  • 通过新方法学习图像像素与3D形状之间的关联,大大降低对注释训练的依赖,从而更接近可以实现更多种类对象3D重建的自我监督系统;
    ) z8 A* K3 Q7 q6 ~; ~( d
  • VoteNet技术,可在LiDAR或其它3D传感器输入可用时,进行对象检测,该系统完全基于3D点云技术,精度更高。
    3 P! }; S& M0 S  e1 L( N0 o* c6 {+ W7 W' n3 R+ i4 z

    0 ^$ M# y+ E+ }( |0 R
如何更好的解析出3D形状. q4 p+ n! n( ~3 ^3 O! x
包括Mask R-CNN在内的很多图像解析AI框架,往往是在2D环境中进行工作,在3D环境下可能并不适用。不过,凭借2D环境中的感知技术作为积累,Facebook重新设计了一个3D对象重建的AI模型。
% x6 Z. {; j' k, _该模型的特点是可在现实的场景图片中去预测3D对象的形状,而这其中的挑战在于光学部分,例如:是否有遮挡,是否有杂波以及其它拓扑的对象。
( L+ {4 W1 M: L/ \: p! T* I; ^为了应对挑战,首先通过网格预测分支加强Mask R-CNN在2D对象分割系统,并构建Totch3d(Pytorch库)从而实现:Mesh R-CNN,其通过Mask R-CNN进行对象的检测和分类。然后通过新型网络预测模型推测3D形状,该预测包含体素预测和网格细化共同构成。
+ T, p* P1 ?( I$ |2 S; C
6 O. `$ b# t1 w9 P* j. N最后通过Detectron2完成整套框架的结构,即:输入RGB图像--检测物体--预测3D形状的过程。/ F: z2 ~2 Y" H
据悉,Facebook的新型方法支持成对图像和网格的完全监督学习预测3D形状,为了进行训练,Facebook还是用10000对图像和网格组成的Pix3D数据集,这个数据集比其它训练数据集(通常10万个图像、需进行标注)要小很多。
: T4 B2 R" X& |最终在两个数据集上进行Mesh R-CNN的评估,效果比较理想。在Pix3D数据集上,能够检测所有类别对象,并能预测出被遮挡的家具的完整形状;而在ShapNet数据集上,体素预测和网格细化的混合法比以前要好7%。
$ n, x- K8 g  [  |' W! ]0 B
) T& B' j! _3 R* O9 x准确预测、并重建现实世界中无约束的场景形状,无疑是增强未来AR\VR等其它类似体验的重要工作。联想到Facebook在今年OC6公布的共享空间和3D重建体验,以及未来面向AR和机器视觉等众多体验的合集LiveMap,这些都是技术的基础。4 h+ ^6 k7 [4 L# [
尽管如此,和2D图像相比,3D图像在收集注释数据的工作上要复杂得多,且更为耗时,这也是3D形状预测数据集比2D对应数据集进展要落后的原因,而接下来Facebook也在探索更多不同的方法,利用监督学习和自我监督学习来重建3D对象。
# C1 {7 z; z& T9 t1 c3 u使用2D关键点重建3D对象类别# A% i/ Q+ A$ E, i" W
对于那些无法使用网格和图像训练、且无需完全重建静态对象/场景的案例,Facebook开发了一种新的代替方案:C3DPO,其通过大量丰富的2D关键节点数据,进行监督学习实现更好的重建结果。而C3DPO以弱监督的方式解析出3D几何形状,且被证明适合大规模部署。" ~2 x8 O6 O9 S# G+ M7 a
+ Q+ i# q3 `( Y  h2 v/ j3 W4 B
其中特定部分(例如人体关键、鸟翅膀)的2D关键点,成为了该方法中重新构建对象几何形状、变形或视点变化的线索。这些3D关键点利用价值也很高,例如在VR中创建逼真的面部和全身网格模型时。
' {8 J, @1 h4 ~$ y2 y6 V, W简单来讲,C3DPO是一种能重建包括数十万具有上千个2D关键点的数据集方法,并且针对三种不同的数据集、14种以上的非刚性物体类别,进行精度重建。另外,和Mesh R-CNN类似,C3DPO同样支持那些有遮挡或部分缺失图像。* d/ J8 r7 ~) Z$ m
而C3DPO模型还具备两个创新,一是,在给定一组单眼2D关键点的情况下,C3DPO将以标准方向预测相机视点的参数和3D关键点位置;二是,Facebook提出一个新的正则化技术,其包括与3D重建网络模型共同学习的第二个辅助深度模型,它解决了因分解3D视点和形状带来的冲突。正是基于这两项创新,才是C3DPO的方法比传统的数据统计模型表现更好。
0 n& `! x) H  b9 ^0 ?# G根据Facebook描述,这种3D模型构建在以前是无法实现的,主要由于此前基于矩阵式分解的方法有很多限制,与C3DPO采用的深度网络模型不同,其能够“小规模”运行。为了解决3D重建带来的变形问题,此前往往通过同一时间多张图像合成解决,这对硬件要求更高,而C3DPO则可以在硬件无法进行3D拍摄(例如飞机等体型特别大的物体)的情况下实现3D重建。( K! [) d. a; y: ?) C
另外还有从图像集学习图形像素与形状的映射关系,以及提升3D系统中对象检测能力的两个论文本文不再解读,感兴趣可阅读原文了解。& x2 X+ |# a8 g- x: O4 d+ _9 u
总而言之,3D计算机视觉领域还有很多值得探究的领域,还有很多问题尚未被解决,还需要像此前进行2D计算机视觉探索那样继续前行。随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。Facebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。1 \* I% Z3 }$ m/ M9 a
随着数字世界的不断推进,我们将会转向使用3D照片、AR、VR等技术,因此未来需要更准确的理解场景中对象、交互动作等一系列复杂的问题。
3 G9 ?% W5 e! H" B4 y- VFacebook表示:能够开发出向人类一样理解现实世界,并与之互动的AI系统是其长期目标。诚然,这就需要不断缩小物理空间和数字化的虚拟空间之间的隔阂与距离,而在3D视觉方面就还有很多工作需要大家共同努力。
. o9 m- ]0 W. s5 ~* X" ?3 V参考:1 C! z1 e" r: R# e) S
https://ai.facebook.com/blog/pushing-state-of-the-art-in-3d-content-understanding/5 t' n$ `5 j7 [- B. \2 @
(END)

3 b& r: N% M  V% Z1 |% b: Q* p
9 k% R& x( u2 H    推荐阅读    
2 z1 r  G! t: X) ^2 C! ^
" T' B0 j' r% y3 B: F6 t# [  D5 S6 ?4 Y5 R

+ n  I+ c8 r* Y9 |+ M
; x2 x- [3 y2 K( I7 r9 P2 }4 T3 B

" Y6 z! @0 t$ P" n" S  s* _4 e/ B  G) o+ _  _, |5 L

# I+ M- G9 I9 p3 F$ Z8 F6 H
, L- U5 l' c$ i6 p. j7 m 每天五分钟,轻松了解前沿科技。    3 ?' v. F0 K% G. W- S+ M$ \" ~7 H8 W
         —— 青亭网  ( ^3 T; |# ^3 @
来源:http://mp.weixin.qq.com/s?src=11&timestamp=1572444005&ver=1944&signature=Nb57qrD6cXqllnhJvEE6H6occUi*WX3i2MU6ToOnegiW6vhKPmdGUN4DuPLvPk3UGjMXyZcIIma3RpHXHPcUaJQxDFHSnOz9N*hHRaEl1BiKeHC0O4YFvbD8CwX78lCz&new=1$ _# c/ i; Z+ X; x8 X7 ~# G
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×

帖子地址: 

梦想之都-俊月星空 优酷自频道欢迎您 http://i.youku.com/zhaojun917
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关闭

站长推荐上一条 /6 下一条

QQ|手机版|小黑屋|梦想之都-俊月星空 ( 粤ICP备18056059号 )

GMT+8, 2025-2-24 03:51 , Processed in 0.052400 second(s), 28 queries .

Powered by Mxzdjyxk! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表