|
核心提示% c5 C. L4 u' Z; [
1.Dias 团队将氢化镥中的部分氢换成氮,并宣称在 1GPa、20 摄氏度的最高转变温度下测量到了超导
b6 N/ R/ b( X. g4 y2. 有关专家认为 Dias 实验存疑,包括合成样品结构不清楚、氢的含量太低。一般而言,超导材料中氢含量越高,其超导转变温度越高3 N; Q8 \! p9 I% @) Z, A
3. 南大团队发现,在 6 万个大气压以下的不同压力中,低至 10K 都没有超导发生
2 p2 L2 E5 i0 j# a! Z3 m% a8 i4. 南大团队表示,Dias 的制备样品方案不可行,所以以新的方式进行合成并得到了镥氮氢材料
2 W& O V% l( m: c m5. 除了闻海虎团队的论文外,近期还有数篇有关氢镥材料的类似研究发表" W' r' L- r9 j1 W- J
" 这个结论肯定是推翻了,毋庸置疑的。" 南京大学超导物理和材料研究中心主任闻海虎对《中国科学报》说出这句话的时候,语气足够坚决。6 l4 Z6 |* Q7 P) Q$ z" Q6 P* B" o
- l4 k/ _4 ^7 q5 \) {
7 K7 ^! J& S% K) f3 h
6 U$ T0 Q4 E6 Z( u& A闻海虎 图源:南京大学
! N/ i& f1 b: {8 P" 这个结论 ",指的就是当下大火的美国罗切斯特大学 Ranga Dias 团队的室温超导研究。他们宣称自己研发的一种镥氮氢材料在近 1 万个大气压(1GPa)下实现了室温超导。
- C$ P, I$ J# v. |3 月 15 日,闻海虎团队在预印本网站 arXiv 提交了一篇包括 9 名作者、长达 16 页的研究论文,直截了当否定了 Dias 的研究结论。论文结论称:" 我们的实验清楚地表明,从环境压力到 6.3GPa,温度低至 10K(约 -263 摄氏度),镥氮氢材料 LuH2±xNy 中不存在超导性。"
# G, I' f# ` W6 P( y# [1 \这距离 Dias 的研究发布只有 8 天,如果实锤,Dias 将会再次被打脸。2 ^5 j6 x" h; f+ m/ c
复刻 Dias 实验% C1 x! T8 a7 ]% O. p( X
3 月 7 日,看见 Dias 在美国物理学会会议上的报告结果后,闻海虎火速安排重复实验," 我们的初步样品很快出来了,后来又作了一些调整 "。
! P* i+ P7 u' p, A& i# x% P为何效率如此之高?闻海虎称,这是他们团队加班加点共同努力的结果。事实上,这个复刻实验 " 难度不是很大 ",但是 " 测量起来还是有难度的 ",因为需要精细的信号,而数据分析也是有难度的,幸好他们 " 平时有很好的积累 "。
2 Y$ y& V4 e# w Q实验并非完全复刻。闻海虎发现,Dias 给的制备样品方案几乎不可行,于是他们结合自己的条件,完全以新的方式进行合成并得到了镥氮氢材料。X 射线衍射仪技术检查显示,该材料结构与 Dias 的样品几乎一致,且能量色散 X 射线光谱仪分析也发现了氮元素。
4 Y; Y1 P% M- o3 p5 `; _3 H闻海虎团队随即在 6 万个大气压以下的不同压力中,对该材料电阻进行了测量,发现低至 10K 都没有超导发生。同时,他们也进行了仔细的磁化测量,发现没有超导所需的抗磁信号。闻海虎说,这些发现足以否定 Dias 的常温低压下的超导结论。/ ~2 L! t: R% z& e6 B
因为 Dias 没有说明其研究材料中的氮含量,目前只能以材料结构来讨论。闻海虎说,尽管样品中氮含量或许有所不同,但是材料结构一样、3 种元素兼具,这个情况下要有超导就应该产生了," 不能说那一点成分的改变会决定超导或不超导 "。+ f4 q7 \ D1 n5 W- x0 _3 e
为什么 Dias 的制备样品方案不可行呢?Dias 的方案是,用两个小金刚石对微腔中的镥、氮气和氢气在 65 摄氏度下加压到 1 万个大气压。闻海虎分析说,Dias 的材料制备方法存在明显的不合理性,65 摄氏度太低,这个温度下能产生金属和氮气、氢气的反应是不可思议的。
) O' z0 b1 M9 o4 h. I8 s' L& c闻海虎说,Dias 可能给了一个错误的条件,或许是温度少了一个 "0"," 除非用激光加热,否则很难做出来 ",然而 Dias 并没有提到激光。闻海虎团队采用了高温高压炉来烧,很快就得到了镥氮氢材料。5 H; I, u& P& t m# ]9 _& P$ W
闻海虎考虑得更严谨。他说,这个材料在几十万个大气压下是否会出现高温超导还不能下结论," 我们也正在做 "。
( s% C+ E2 h4 i2 L4 U需要更多的验证4 q3 c( \" L5 H- K! q
从 1968 年到今天,物理学家一直在研究与氢有关的超导属性,硫化氢、稀土氢化物和碱土氢化物可以在超过 200K 的温度下转变为超导态。
) r" h k9 c) `2 v; V( X- _8 z8 c) S: n+ G& d
" M2 p" {; { Q2 r4 q
* U h3 v3 W& k6 e; D$ F
Dias
* p8 |) [: i0 k. g: uDias 团队这次将氢化镥中的部分氢换成氮,并宣称在 1GPa、20 摄氏度的最高转变温度下测量到了超导。如果被证实,这将是史无前例的一大进步。
! w0 F. o! B$ I此前,中科院物理研究所研究员靳常青在接受《中国科学报》采访时,提及 Dias 这次研究的几个存疑细节,包括合成样品结构不清楚、氢的含量太低(与之前发现的富氢超导体迥异)。+ _* q; E" P: ^- } x8 n9 C! |
为何氢的含量如此重要?这与学界对超导的一种固有认识有关。一般而言,超导材料中氢含量越高,其超导转变温度越高。, H9 l- M! m* f, V0 F, ~
计算化学家、美国加州州立大学北岭分校副教授苗茂生告诉《中国科学报》,富氢超导体和低氢超导体二者是 " 完全不同的系统 ",Dias 的结论颠覆了已有的认识。比如十氢化镧超导转变温度为零下 13 摄氏度,已经很高了;而 Dias 的镥氮氢材料中,镥:氢摩尔比不到 3,远远低于十氢化镧,其超导转变温度却高于十氢化镧。
2 h2 j" U9 s" B9 f苗茂生说,很难想象 Dias 的镥氮氢材料会成为一个电声子耦合超导。基于电声子耦合理论计算得出,这个材料的超导转变温度应该在十几 K。
) Y# q) ], ^1 z, @. m他提示,高压实验是非常难做的实验,样品特别小,合成条件又很难达到非常均匀,加上信号测量的噪声非常大,这些都是容易产生误判的因素。
( H9 z8 e v7 y除了闻海虎团队的论文外,近期还有数篇有关氢镥材料的类似研究发表。
. r8 }0 G6 p/ ?4 Z$ n4 N更早的研究来自靳常青团队。3 月 9 日,他们在 arXiv 发表研究称,多氢化镥在 218GPa 的压力下超导转变温度为 71K(约 -202 摄氏度);当压力释放到 181GPa 时,超导转变温度降低到 65K(约 -208 摄氏度)。这些超导转变温度都远远低于室温。* y. ]; F4 p3 V8 o6 s
中科院物理研究所研究员程金光团队于 3 月 12 日在 arXiv 发布了另一项研究。尽管他们的材料没有添加氮元素,但他们在高达 7.7GPa 的压力下对二氢化镥的测量表明,温度低至 1.5K(约 -272 摄氏度)时没有超导性。
3 {5 T( |1 G- h. ?2 z4 o/ _三问 " 室温超导 "6 K% ^" e# q% g8 ]% y' y
1. 什么是 " 室温超导 "?* B. y, c! e: F O$ t# V/ F
中国科学院物理研究所、超导国家重点实验室研究员罗会仟先解释了 " 超导现象 ",他说:" 超导是零电阻,没有损耗,通电不会发热。" 通常情况下,电流从物体中穿过会产生消耗。如果物体的电阻越小,这个物体的导电性就越强。所谓超导现象,就是一种特殊 " 零电阻 + 完全抗磁性 " 物理现象。1911 年春,荷兰物理学家海克 · 卡末林 · 昂内斯惊喜地发现在零下 269 ℃的环境中,汞的电阻降为零,他把这种现象称为超导性。
& ~1 _# Z4 ~" R3 [3 ?2 B* ~7 ?然而,这些材料只能在超低温下失去阻力,这限制了实际应用。几十年来,科学家们一直在寻找在室温下工作的超导体。如果室温超导研究被证实,那么超导材料将可能在生产生活中得到大规模应用。) S( @ Q* u* d) f5 D( n
2." 室温超导 " 会改变生活吗?
) a1 v% q/ z% u0 q" 超导在很多方面有非常重要的用途。在城市电网里面用来输电的话,可以节省很多能源。超导还可以做高场磁体,应用到医院的核磁共振的成像。" 罗会仟告诉记者," 超导应用的一个例子,就是我们的高温超导磁悬浮。"1 B4 v: A0 Y8 ]0 `' J( N
据新华每日电讯,世界第一台高温超导高速磁悬浮列车就在四川成都正式亮相,由西南交通大学研发,其工作原理就是在列车底部安装超导体,然后在行进的过程中不断使用液氮将其降温到 " 高温 "(超导临界温度以下,约 77K),在电磁铁修建的轨道上运行。. s" ^5 S$ k2 a7 l% T3 \
6 T- V n6 U- \; G+ P% m/ S
" q, t1 v9 S8 T7 |; M) s- B# F
* r$ G4 [; X, l& B2 @6 x2 P/ x- L! T& j
高温超导高速磁浮工程化样车驾驶台 图源:新华社. ?# G/ A1 X6 ~( k0 I* }
如果美国团队这一充满争议的 " 室温超导 " 研究被证实,是否能够投入大规模应用,改变人类的生活?
0 K/ J* m5 I8 c6 @! \* H对此,罗会仟认为需要谨慎看待其商用未来前景。" 大家不要盲目乐观。室温超导都实现了,是不是将来所有的能源方面,我都可以用上?不是的,因为只要它某一个关键参数不好用,我们就可能很难做到规模化的应用。"- i* e% V* j0 B3 A) W
罗会仟进一步解释说:" 可以很肯定地说,如果是基于今天这个高压技术,它是绝对不可能有大规模应用。它不是单纯一个临界温度的指标就够了的。你光临界温度提高上去,材料其他的性质没有跟上去的话,它也用不了。" 他指出,即使降低了压力,约有 1 万个大气压的 1GPa 压力对于实际应用仍是一项挑战。3 ^- Y7 {" |1 H9 e2 k0 `
" 如果将来我们(假设)把压力撤掉,它这个材料依旧是稳定的,而且是室温超导的,可能这个材料用途就很高了。所有的能够用到电和磁的地方,我们都可以用上超导材料。", {# j0 ^# K+ Z8 ]+ I
3." 室温超导 " 能够带来多高的商业利益?
; ~+ K. R: E' a" E i P" 室温超导 " 带来的商业利益有多高?罗会仟表示,这一前景目前 " 没法判断 "。" 其实还远着,至少从今天来看,它最多是有一些基础研究的价值,只是证明我们有希望,但是希望要多久,其实可能是几年、几十年甚至一百年都有可能。我的判断是,这个技术所谓的颠覆性,不会一下子来得那么快。" 他表示,基础科研和应用科研差距很大,此项研究是基础科研,意义在于探索和发现。
# W, W$ _6 F; N/ t5 [, \罗会仟长期从事高温超导机理的基础科研,目前已发表论文 160 余篇,他在铁基超导体中的量子临界、自旋共振、电子向列涨落等前沿方面取得了不少进展。基于自己在科研工作中的感受,他告诉红星新闻记者:" 如果你整天只盯着这个东西一定要有什么用的话,对做基础科研的科学家来说是非常痛苦的。" |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
×
|